Permite transmitir un movimiento giratorio entre dos ejes paralelos.
Este sistema consiste, básicamente, en dos ruedas solidarias con sus ejes, cuyos perímetros se encuentran en contacto directo, pudiendo transmitirse el movimiento de una a otra mediante fricción.
Su utilidad se centra en transmitir un movimiento giratorio entre dos ejes pudiendo modificar las características de velocidad y sentido de giro.
UTILIDAD
Debido a que el único medio de unión entre ambas ruedas es la fricción que se produce entre sus perímetros, no pueden ser empleadas para la transmisión de grandes esfuerzos. Se suelen encontrar en aparatos electrodomésticos de audio y vídeo, así como en algunas atracciones de feria (norias, vaivenes...) en las que un neumático acciona una pista de rodadura.
Debido a las características del acoplamiento entre las ruedas, el sentido de giro de ambos ejes es contrario, siendo necesario recurrir a una rueda loca para conseguir que ambos giren en el mismo sentido.
Los sistemas de transmisión de poleas y correas se emplean para transmitir la potencia mecánica proporcionada por el eje del motor entre dos ejes separados entre sí por una cierta distancia. La transmisión del movimiento por correas se debe al rozamiento éstas sobre las poleas, de manera que ello sólo será posible cuando el movimiento rotórico y de torsión que se ha de transmitir entre ejes sea inferior a la fuerza de rozamiento. El valor del rozamiento depende, sobre todo, de la tensión de la correa y de la resistencia de ésta a la tracción; es decir, del tipo de material con el que está construida (cuero, fibras, hilos metálicos recubiertos de goma, etc.) y de sus dimensiones.
Las poleas son ruedas con una o varias hendiduras en la llanta, sobre las cuales se apoyan las correas.
Las correas son cintas cerradas de cuero y otros materiales que se emplean para transmitir movimiento de rotación entres dos ejes generalmente paralelos. Pueden ser de forma plana, redonda, trapezoidal o dentada.
Este sistema se emplea cuando no se quiere transmitir grandes potencias de un eje a otro. Su principal inconveniente se debe a que el resbalamiento de la correa sobre la polea produce pérdidas considerables de potencia; sobre todo en el arranque. Para evitar esto parcialmente se puede utilizar una correa dentada, que aumenta la sujeción.
Para evitar que las correas se salgan de las poleas, será necesario que las primeras se mantengan lo suficientemente tensas como para que sean capaces de transmitir la máxima potencia entre ejes sin llegar a salirse ni romperse. Para evitar este problema se emplean a veces rodillos tensores, los cuales ejercen sobre las correas la presión necesaria para mantenerlas en tensión.
planas, se les da forma de correas sin fin cerrándolas con piezas especiales para unión de correas. Antiguamente se utilizaban para la transmisión de grandes esfuerzos. En la actualidad están en desuso.Las correas del tipo plano están constituidas por una banda continua cuya sección transversales rectangular, fabricadas de distintos materiales siendo los más empleados :Cuero de 4 a 6 mm de espesor. Para bandas de más espesor se unen capas sucesivas de cuero mediante adhesivos, construyéndose bandas de dos capas y bandas de tres capas.
trapeciales, se confeccionan con caucho y son especialmente apropiadas para poleas pequeñas que desarrollan grandes velocidades. Son las más utilizadas actualmente. Las correas trapeciales o en V son las más usadas en este tipo de transmisiones. Se construyen de caucho en cuyo interior se colocan elementos resistentes a la tracción.
circulares, son apropiadas para la transmisión de pequeñas fuerzas, como las de las máquinas grabadoras o los tornos de relojeros, son correas de sección transversal circular. Surcos redondos solamente convenientes para poleas que guían la correa. La ranura en V transmite el par a través de una acción de cuña, lo que aumenta la fricción. Sin embargo, las correas redondas son para uso en relativamente bajas de par únicas situaciones y se pueden comprar en varias longitudes o cortar a la longitud y unido, ya sea mediante una grapa, un conector metálico (en el caso de plástico hueco), encolado o soldadura (en el caso de poliuretano). Las primeras máquinas de coser utilizaron una correa de cuero, unido, ya sea por una grapa metálica o pegada, con gran efecto.
RELACIÓN DE TRANSMISIÓN
La relación de transmisión i es una magnitud adimensional que representa el número de veces que la rueda de salida gira más que la rueda de entrada.
La relación de transmisión es igual al cociente entre el diámetro de la polea del árbol resistente (d2) y el diámetro de la polea del árbol motor (d1).
Transmisión Simple
Cuando un mecanismo se transmite directamente entre dos ejes (motriz y conducido), se trata de un sistema de transmisión simple.
El sistema de poleas con correa más simple consiste en dos poleas situadas a cierta distancia, que giran a la vez por efecto del rozamiento de una correa con ambas poleas. Las correas suelen ser cintas de cuero flexibles y resistentes. Es este un sistema de transmisión circular puesto que ambas poleas poseen movimiento circular.
En base a esta definición distinguimos claramente los siguientes elementos:
Sistema de poleas con correa
1. La polea motriz: también llamada polea conductora: Es la polea ajustada al eje que tiene movimiento propio, causado por un motor, manivela,
… En definitiva, este eje conductor posee el movimiento que deseamos transmitir.
2. Polea conducida: Es la polea ajustada al eje que tenemos que mover. Así, por ejemplo: en una lavadora este eje será aquel ajustado al tambor que contiene la ropa.
3. La correa de transmisión: Es una cinta o tira cerrada de cuero, caucho u otro material flexible que permite la transmisión del movimiento entre ambas poleas. La correa debe mantenerse lo suficientemente tensa pues, de otro modo, no cumpliría su cometido satisfactoriamente.
Según el tamaño de las poleas tenemos dos tipos:
1. Sistema reductor de velocidad: En este caso, la velocidad de la polea conducida (o de salida) es menor que la velocidad de la polea motriz (o de salida). Esto se debe a que la polea conducida es mayor que la polea motriz.
En el siguiente vídeo se puede apreciar un mecanismo reductor de poleas con correa. Observa como la polea motriz es menor que la polea conducida la cual gira a mayor velocidad.
Una polea es una máquina simple, un dispositivo mecánico de tracción, que sirve para transmitir una fuerza. Consiste en una rueda con un canal en su periferia, por el cual pasa una cuerda que gira sobre un eje central. Además, formando conjuntos —aparejos o polipastos— sirve para reducir la magnitud de la fuerza necesaria para mover un peso.
Según la definición de Hatón de la Goupillière, «la polea es el punto de apoyo de una cuerda que moviéndose se arrolla sobre ella sin dar una vuelta completa»1 actuando en uno de sus extremos la resistencia y en otro la potencia.
La única nota histórica sobre su uso se debe a Plutarco, quien en su obra Vidas paralelas (c. 100 a. C.) relata que Arquímedes, en carta al rey Hierón de Siracusa, a quien le unía gran amistad, afirmó que con una fuerza dada podía mover cualquier peso e incluso se jactó de que si existiera otra Tierra, yendo a ella podría mover ésta. Hierón, asombrado, solicitó a Arquímedes que realizara una demostración.
Acordaron que el objeto a mover fuera un barco de la armada del rey, ya que Hierón creía que este no podría sacarse de la dársena y llevarse a dique seco sin el empleo de un gran esfuerzo y numerosos hombres. Según relata Plutarco, tras cargar el barco con muchos pasajeros y con las bodegas repletas, Arquímedes se sentó a cierta distancia y tirando de la cuerda alzó sin gran esfuerzo el barco, sacándolo del agua tan derecho y estable como si aún permaneciera en el mar.2
La llanta: Es una zona exterior de la polea y su constitución es esencial, ya que se adaptará a la forma de la correa que alberga.
El cuerpo: Las poleas están formadas por una pieza maciza cuando sean de pequeño tamaño. Cuando sus dimensiones aumentan, irán provistas de nervios y/o brazos que generen la polea, uniendo el cubo con la llanta.
El cubo: Es el agujero cónico y cilíndrico que sirve para acoplar al eje. En la actualidad se emplean mucho los acoplamientos cónicos en las poleas, ya que resulta muy cómodo su montaje.
Los elementos constitutivos de una polea son la rueda o polea propiamente dicha, en cuya circunferencia (llanta) suele haber una acanaladura denominada "garganta" o "cajera" cuya forma se ajusta a la de la cuerda a fin de guiarla; las "armas", armadura en forma de U invertida o rectangular que la rodea completamente y en cuyo extremo superior monta un gancho por el que se suspende el conjunto, y el "eje", que puede ser fijo si está unido a las armas estando la polea atravesada por él ("poleas de ojo"), o móvil si es solidario a la polea ("poleas de eje"). Cuando, formando parte de un sistema de transmisión, la polea gira libremente sobre su eje, se denomina "loca".
Según su desplazamiento las poleas se clasifican en "fijas", aquellas cuyas armas se suspenden de un punto fijo (la estructura del edificio) y, por lo tanto, no sufren movimiento de traslación alguno cuando se emplean, y "móviles", que son aquellas en las que un extremo de la cuerda se suspende de un punto fijo y que durante su funcionamiento se desplazan, en general, verticalmente.3
Cuando la polea obra independientemente se denomina "simple", mientras que cuando se encuentra reunida con otras formando un sistema recibe la denominación de "combinada" o "compuesta".
Existen sistemas múltiples de poleas que pretenden obtener una gran ventaja mecánica, es decir, elevar grandes pesos con un bajo esfuerzo. Estos sistemas de poleas son diversos, aunque tienen algo en común, en cualquier caso, se agrupan en grupos de poleas fijas y móviles: destacan los polipastos:
Esquema de la ventaja mecánica que se obtiene con diversas poleas compuestas.
El polipasto (del latín polyspaston, y este del griego πολύσπαστον), es la configuración más común de polea compuesta. En un polipasto, las poleas se distribuyen en dos grupos, uno fijo y uno móvil. En cada grupo se instala un número arbitrario de poleas. La carga se une al grupo móvil.
El mecanismo tornillo-tuerca, conocido también como husillo-tuerca es un mecanismo de transformación de circular a lineal compuesto por una tuerca alojada en un eje roscado (tornillo).
Si el tornillo gira y se mantiene fija lo orientación de la tuerca, el tornillo avanza con movimiento rectilíneo dentro de ella.
Por otra parte, si se hace girar la tuerca, manteniendo fija la orientación del tornillo, aquella avanzará por fuera de ésta. Este mecanismo es muy común en nuestro entorno, pues lo podemos encontrar en infinidad de máquinas y artilugios.
Evidentemente, este mecanismo es irreversible, es decir, no se puede convertir el movimiento lineal de ninguno de los elementos en circular.
El avance depende depende de dos factores:
La velocidad de giro del elemento motriz.
El paso de la rosca del tornillo, es decir, la distancia que existe entre dos crestas de la rosca del tornillo. Cuando mayor sea el paso, mayor será la velocidad de avance.
Veamos algunos instrumentos que incorporan este mecanismo:
El sargento: Esta herramienta de sujeción de piezas que se van a mecanizar, muy común en cualquier aula de tecnología, tiene este mecanismo como elemento esencial. En este caso, el elemento motriz es el tornillo que, al girarlo manualmente, avanza dentro de la tuerca que posee el brazo de la corredera.
La bigotera: Este instrumento, muy común en las clases de plástica, regula la abertura de sus brazos gracias al giro de un tornillo que mantiene su posición y que actúa como elemento motriz. Las tuercas se encuentran en los brazos del compás, las cuales avanzan dentro del tornillo.
El gato mecánico: En este caso, al girar la manivela, gira la tuerca, que actúa como elemento motriz y, a la vez, avanza por el tornillo linealmente de forma que se cierran las barras articuladas que levantan el automóvil.
El grifo de rosca: El elemento es el mando giratorio del grifo, acoplado a un tornillo (elemento motriz) que avanza linealmente y gira dentro de una tuerca. En el extremo del tornillo hay una zapata de caucho que termina cerrando el paso al agua.
El cigüeñal es un árbol de transmisión que junto con las bielas transforma el movimiento alternativo en circular, o viceversa. En realidad consiste en un conjunto de manivelas. Cada manivela consta de una parte llamada muñequilla y dos brazos que acaban en el eje giratorio del cigüeñal. Cada muñequilla se une una biela, la cual a su vez está unida por el otro extremo a un pistón. Observa la imagen y lo entenderás inmediatamente…Uncigüeñal1 ocigoñal2 es un eje acodado, con codos y contrapesos presente en ciertasmáquinasque, aplicando el principio delmecanismo de biela-manivela, transforma el movimiento rectilíneo alternativo en circular uniforme y viceversa.
En los motores de automóviles el extremo de la biela opuesta al bulón del pistón (cabeza de biela) conecta con la muñequilla y es la parte que se une al cigüeñal, la cual junto con la fuerza ejercida por el pistón sobre el otro extremo (pie de biela) genera el par motor instantáneo, que esta acoplado un casquillo antifricción para la unión con el pistón, a través de un eje llamado bulón. El cigüeñal va sujeto en los apoyos, siendo el eje que une los apoyos el eje del motor.
Normalmente se fabrican de aleaciones capaces de soportar los esfuerzos a los que se ven sometidos y pueden tener perforaciones y conductos para el paso de lubricante. Sin embargo, estas aleaciones no pueden superar una dureza a 40 Rockwell «C» (40 RHC), debido a que cuanto más dura es la aleación más frágil se hace la pieza, y se podría llegar a romper debido a las grandes fuerzas a las que está sometida. Hay diferentes tipos de cigüeñales; los hay que tienen un apoyo cada dos muñequillas y los hay con un apoyo entre cada muñequilla.
Por ejemplo, para el motor de automóvil más usual, el de cuatro cilindros en línea, los hay de tres apoyos (hoy ya en desuso), y de cinco apoyos, el más común actualmente.
En otras disposiciones como motores en V o bien horizontales opuestos (boxer) puede variar esta regla, dependiendo del número de cilindros que tenga el motor. El cigüeñal es también el eje del motor con el funcionamiento del pistón y gradualmente se usa así en los automóviles con motor de combustión interna actuales.El cigüeñal forma parte del mecanismobiela-manivela, es decir de la serie de órganos que con su movimiento transforman la energía desarrollada por la combustión en energía mecánica. El cigüeñal recoge y transmite al cambio la potencia desarrollada por cada uno de los cilindros. Por consiguiente, es una de las piezas más importantes del motor.
En los motores rotativos (eléctricos o de turbina), el árbol motor tiene simplemente forma cilindrica, con estriados para su ajuste con el rotor (inducido eléctrico o rodete de la turbina) y engranajes o poleas para transmitir el movimiento. En los motores de pistón rotativo (tipo Wankel) el cigüeñal lleva simplemente una excéntrica circular por cada pistón.
Sin embargo, en los motores alternativos tradicionales tiene una forma más complicada (puesto que hay manivelas), determinada por la necesidad de transformar el movimiento alternativo en movimiento giratorio: precisamente dada su forma, se le denomina árbol de manivelas o árbol de codos, además de cigüeñal.
En los primeros tiempos, el motor típico de combustión interna era monocilíndrico, y el cigüeñal, al tener una sola manivela, era completamente semejante al antiguo berbiquí de carpintero, denominado en francés «vilebre-quin». El término vilebrequin es aún hoy día el apelativo francés correspondiente al español cigüeñal. Los ingleses lo llaman «crankshaft», que significa árbol-manivela. Cada manivela está formada por dos brazos llamados brazos de manivela y por la muñequilla de manivela o muñequilla de biela, que gira sobre el cojinete de la cabeza de biela. Las muñequillas del eje de rotación del cigüeñal se denominan muñequillas de bancada.
REPORT THIS AD
Los cigüeñales se utilizan extensamente en los motores de combustión de los automóviles, donde el movimiento lineal de los pistones dentro de los cilindros se trasmite a las bielas y se transforma en un movimiento rotatorio del cigüeñal que, a su vez, se transmite a las ruedas y otros elementos como un volante de inercia. El cigüeñal es un elemento estructural del motor.
En la siguiente imagen puedes apreciar un cigüeñal real unido a sus respectivas bielas
Al observar esta imagen, nos viene a la cabeza la imagen del mecanismo de biela-manivela… y es que, al fin y al cabo, este conjunto de pistones, bielas y cigüeñal se puede considerar como una serie de mecanismos biela-manivela que funcionan de forma simultánea y sincronizada.
Este mecanismo transforma el movimiento circular de la manivela en un movimiento alternativo del
Conjunto cigüeñal, biela y pistón
pie de una biela, que es una barra rígida, cuyo extremo está articulado y unido a la manivela. Este sistema también funciona a la inversa, es decir, transforma el movimiento alternativo de la biela en un movimiento de rotación de la manivela. Este mecanismo es esencial, pues se utiliza en motores de combustión interna, máquinas de vapor, máquinas de coser, herramientas mecánicas, etc. En el caso de los motores de los coches, la manivela es sustituida por el cigüeñal, que arrastra los pistones del motor a través de las bielas.
En la siguiente imágen se puede observar el mecanismo en acción en el que se aprecia la biela (de color gris) unida a la manivela (circular) por un extremo. El otro extremo de la biela tiene el movimiento alternativo ya citado en el que podría fijarse, por ejemplo, un pistón. Véase también Motores de combustión.
En la imagen inferior puedes observar una analogía entre el mecanismo de biela manivela y el pedal de una bicicleta. En este caso, tus piernas actuarían como bielas que poseen movimiento alternativo, actuando a la vez como elemento motriz, mientras que los pedales hacen las veces de manivela y elemento conducido.
En la siguiente imagen animada puedes apreciar el mecanismo con un ejemplo más realista.
En mecánica, una leva es un elemento mecánico hecho de algún material(madera,metal, plástico, etc.) que va sujeto a un eje y tiene un contorno con forma especial. De este modo, el giro del eje hace que el perfil o contorno de la leva toque, mueva, empuje o conecte una pieza conocida como seguidor.
Permite obtener un movimiento alternativo, a partir de uno circular; pero no nos permite obtener el circular a partir de uno alternativo (o de uno oscilante). Es un mecanismo no reversible, es decir, el movimiento alternativo del seguidor no puede ser transformado en un movimiento circular para la leva. Si haces clic sobre el dibujo de la derecha, verás a la leva en acción.
En resumen:
Tipo de mecanismo: Transformación circular a alternativo.
Elemento motriz: Leva, que describe un movimiento circular.
Elemento conducido: Seguidor, que describe un movimiento alternativo.
Este mecanismo se emplea en: motores de automóviles (para la apertura y cierre de las válvulas), programadores de lavadoras (para la apertura y cierre de los circuitos que gobiernan su funcionamiento), carretes de pesca (mecanismo de avance-retroceso del carrete), cortapelos, depiladoras,
Un automóvil posee múltiples cilindros (normalmente cuatro) con sus respectivas válvulas. Éstas deben abrirse y cerrarse siguiendo una secuencia periódica muy precisa y perfectamente sincronizada con el resto de los elementos del motor.
Conjunto de leva, taqué, balancín y válvula
Es por esto que todas las levas van montadas sobre un mismo elemento llamado árbol de levas. Por otra parte, cada una de las levas obliga a su correspondiente seguidor, llamado taqué, a un movimiento alternativo que se transmite hasta válvula a través de una palanca llamada balancín. Fíjate en la animación y comprenderás inmediatamente de qué hablo.